Diffusion

Learning Outcomes

- Diffusion is the movement of molecules from a high concentration to a low concentration down a concentration gradient until evenly spread.
- 2. Diffusion takes place through the cell membrane because it is selectively permeable.
- 3. Diffusion does not require energy to take place.

gradient until they are evenly spread out

Importance of Diffusion

- Diffusion of molecules takes place in plant cells, animal cells and in unicellular organisms.
- Substances a cell needs diffuse into the cell
- Substances a cell doesn't want diffuse out of the cell

Importance of Diffusion

In multicellular organisms

Animals:

Dissolved food and oxygen oves from the bloodstream into respiring cells. Waste products move from the cells into the Bloodstream

Plants:

Carbon Dioxide needed for Photosynthesis diffuses into the plant

In Unicellular organism

- Useful substances like Oxygen and dissolved food can enter it
- Waste substances
 like Carbon Dioxide
 can leave it

Movement through Membranes

- <u>Title</u>: Making a "Model Cell" using Visking Tubing to Investigate the Diffusion of Molecules
- <u>Aim</u>: To investigate the movement of starch and glucose across a selectively permeable cell membrane

<u>Collect</u>

- Boiling Tube and a test tube
- Boiling Tube Rack
- 20 ml Starch/glucose Solution
- 20 ml Water
- Syringe
- Dropper
- 1 length (20cm) of visking tubing
- Iodine to test for starch
- Benedicts solution to test for glucose

Now watch Mrs Wrightson...

<u>First</u> – leave half a page for your method write up

Copy - <u>Results</u>

Substance	Present in surrounding water at start	Present in surrounding water after 30 mins
Starch		
Glucose		

Method

- Rinse the bags under running water and dry with a paper towel before you weigh them
- Test surrounding water for starch and glucose first

Variables kept constant for a valid set of results

- Time (30mins)
- Temperature (room temp)
- Volume of solutions in each bag
- Concentration of sucrose solution
- Volume of solutions in boiling tubes
- Length of visking tubing

Osmosis is the movement of molecules from a water concentration to a _____ water concentration, through a s_____p m_____ until evenly s____

Solutions of Different Concentrations

- Solutions can have different concentrations. The concentration inside a cell may not be equal to the liquid surrounding it. When we compare the differing solutions we use the following words;
- 1. <u>Hypotonic</u> This describes solutions that have the higher water concentration.
- 2. <u>Isotonic</u> This describes solutions that are of equal concentration.
- <u>Hypertonic</u> This describes solutions that have the lower water concentration.

RED BLOOD CELLS (animal)

Activity

Collect 'Osmosis in animal cells' and Osmosis in plant cells' sheet

TYK, page 33TYK, page 37

Title: Osmosis through living tissue

<u>Aim</u>: To investigate the movement of water through potato tissue in different concentrations of solutions

Method:

<u>Results</u>:

Conditions	Initial Weight (g)	Final Weight (g)	Change in Weight (g)	Percentage change in Weight (%)
A: Water				
B: 5% S.Solution				
C: 25% S.Solution				
D: Air				

Analysis of results:

- In experiment A their was a percentage (increase/decrease/stayed the same) in the weight of potato.
- In experiment B their was a percentage (increase/decrease/stayed the same) in the weight of potato.
- In experiment C their was a percentage (increase/decrease/stayed the same) in the weight of potato.
- In experiment D their was a percentage (increase/decrease/stayed the same) in the weight of potato.

<u>Conclusion</u>:

- This experiment concludes that water does move from an area of high water concentration to an area of low water concentration through a selectively permeable membrane.
- In experiment A, the water moved from a ____outside the potato to a ____ inside the potato by osmosis. The potato tissue is said to be turgid.
- In experiment B, ...
- In experiment C, ...
 - In experiment D, ...

Osmosis Experiment

<u>To determine the Isotonic point in</u> <u>potato tissue</u>

Viewing Plasmolysis in Plant tissue

<u>Aim</u>: To prepare a slide containing red onion epidermis bathed in a concentrated sucrose solution.

<u>Method</u>:

<u>Results</u>: Draw what you see

<u>Conclusion</u>:

When placed in a hypertonic solution, plant cells loose water by osmosis and become plasmolysed