

Mitosis

Cell division is a means of <u>increasing the number of cells</u> in an organism.

Single celled organisms use cell division as a way of reproducing <u>asexually</u>.

Multi- cellular organisms use cell division as a way of producing more cells for growth and repair.

The <u>nucleus</u> of the cell controls cell activities including division.

lets look at these stages

Stage 1

No chromosomes are visible but chromosomes are replicating themselves

Before Replication

After Replication

 Each chromosome is now made of 2 identical chromatids joined at a

centromere

Each species of plant or animal has a specific number of chromosomes in their cells - humans have 46

Stucture of Chromosomes

A chromosome has two identical halves called <u>chromatids</u> joined at a central point.

Stage 2

• chromosomes coil and appear inside nucleus

Stage 3.

•The chromosomes are lined up along the equator by spindle fibres

Stage 4.

•The chromosomes are separated and pulled to opposite sides (poles) by the spindle fibres.

Stage 5.

•The two sets of identical chromatids arrive at the poles

Stage 6.

Nuclear membrane reforms around each sets of chromosomes and the cytoplasm divides
Two identical daughter cells are produced.

BBC - Learning
Zone Class Clips
- Sell division by
mitosis - Science
Video

Put these mitosis pictures in order

Correct sequence

1

Chromosome Complement (number)

- After cell division, the two new daughter cells contain the <u>same number of</u> <u>chromosomes</u> to the original parent cell.
- This is important so <u>no genetic information</u> is lost.

Diploid Cells

Most cells contain 2 sets of chromosomes.
 These are called <u>diploid</u> (double) cells.

 Sex cells (gametes) are the only cells that contain half the number of chromosomes in comparison. They are described as <u>haploid</u> (half) cells.

 Red Blood Cells have no nucleus so contain no chromosomes

Uncontrolled Cell Division - Cancer

Practice Questions

 If a cell divides every 30 minutes, how many new cells would be produced after 4 hours?

Practice Questions

Culturing Cells by Mitosis

· Learning outcome:

1. To be able to carry out aseptic techniques to culture cells in the laboratory.

Culturing Cells

- When a supply of a certain type of cell is required, cultures of the cell may be grown.
- For example:
- 1. Fungus to produce antibiotics;
- 2. Yeast for bread making and beer/wine making;
- 3. Bacteria producing Insulin

<u>Cultures</u>

 Certain <u>precautions</u> must be taken when working with micro-organisms in the laboratory.

 Aseptic (sterile) conditions are required to prevent the growth of unwanted airborne microbes in the culture.

Flaming the loop

Flaming the Bottle Neck

Streak Plate

Cell Culture Requirements

- 1. Sterile environment free from contaminants
- 2. An appropriate growth medium that contains glucose and nutrients for mitosis to occur
- 3. A controlled environment to provide optimum conditions for growth (temperature, oxygen levels, pH)

Therapeutic Use of Human Stem Cells

 Human stem cells can be cultured in the laboratory and used to produce replacement organs.

