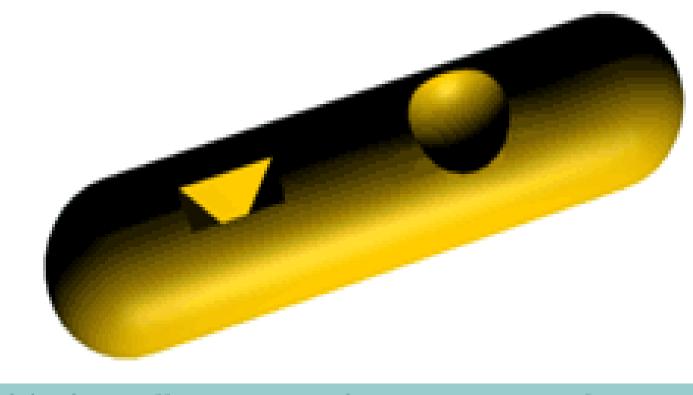


Cell Biology

Monday, November 02, 2015

Mrs Wrightson

1


Recap

Enzymes are <u>specific</u>: They only act with one substrate.

	Type of Reaction	Substrate	Enzyme	Product
	Degradation	Starch	Amylase	Maltose
	Degradation	Protein	Pepsin	Peptides
	Degradation	Fat	Lipase	Fatty acids and glycerol
	Degradation	Hydrogen peroxide	Catalase	Oxygen and water
	Synthesis	Glucose-1- phosphate	Phosphorylase	Starch
Mor 201	nday, November 02, 5	Mrs Wr	ightson	

Watch Me

enzyme molecule showing the active site

Monday, November 2021S a diagrammatic representation 2015

<u>Activity</u>

 Collect 2 colours of Play Do and make an enzyme(including active site) with one of the colours and its substrate using the second colour.

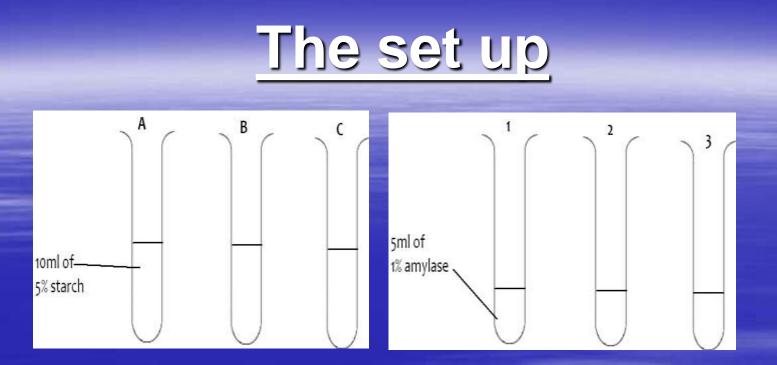
Catalase Demo

Enzymes are biological <u>catalysts</u> Catalysts <u>speed up</u> reactions

Monday, November 02, 2015

Optimum Conditions

Learning Outcomes:


- The conditions in which an enzyme will work best is called its <u>optimum</u>;
- Two conditions which must be at an optimum for an enzyme to work are <u>temperature and pH</u>;
- If an enzyme is not at its optimum it can result in a change of shape until the enzyme is permanently damaged;
- An enzyme which is damaged and unable to work is said to be <u>denatured</u>

Factors Affecting Enzyme Activity

For enzymes to function efficiently=

1. Temperature;

2. pH;

1. Set the boiling tubes up as shown above.

2. Place Tubes A and 1 into the trough filled with ice for 10 minutes.

Place tubes B and 2 into the 37°C water bath for 10 minutes.

- Place tubes C and 3 into the 90°C water bath for 10 minutes.
- 5. Combine the contents of tubes A&1, B&2, C&3
- 6. Leave in the correct conditions for 20 minutes
- 7. Test each solution for reducing sugars

Temperature (°C)	Sugar present (lots/some/none)
0	
37	
90	

Conclusion –

At 0 °C, it was too _____ for the enzymes to work properly. The enzymes were not damaged.

At 37 °C, it was the optimum temperature for the enzyme to work. Lots of sugar was produced as the enzyme ______ broke down the ______.

At temperatures above the o_____, the enzyme became d_____ and could no longer b_____ d____ the sugar so there was no sugar produced.

Line graph Practice

Temperature (°C)	Enzyme Activity (units)
0	0
10	5
20	15
30	50
40	60
45	40
50	0

1. Plot a line graph of these results to show the effect temperature has on enzyme activity

2. Describe what happens to the enzyme activity between 0 - 20 °C

3. Describe what happens to enzyme activity between 20 - 40 °C

4. Describe what happens to the enzyme activity between 40 - 50 °C

 Optimum - conditions where enzymes work best.

Monday, November 02, 2015

<u>Denaturing</u>

At temperatures <u>above</u> an enzyme's optimum the enzyme becomes <u>denatured</u>:

Why does this happen?

Active site shape is permanently changed so the substrate no longer fits.

Image: Constraint of the second sec

Factors Affecting Enzyme Activity

For enzymes to function efficiently=

1. Temperature;

2. pH;

Monday, November 02, 2015

pH - Testing you knowledge

pH

pH 7

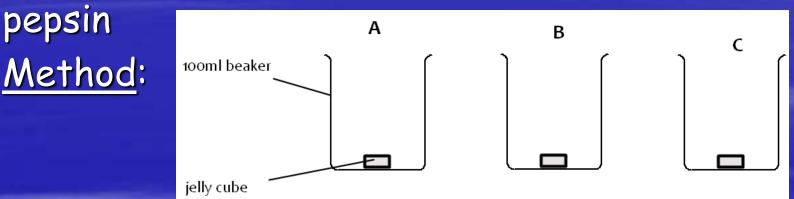
pH 14

Acidic

Neutral (water)

Alkaline

Monday, November 02, 2015

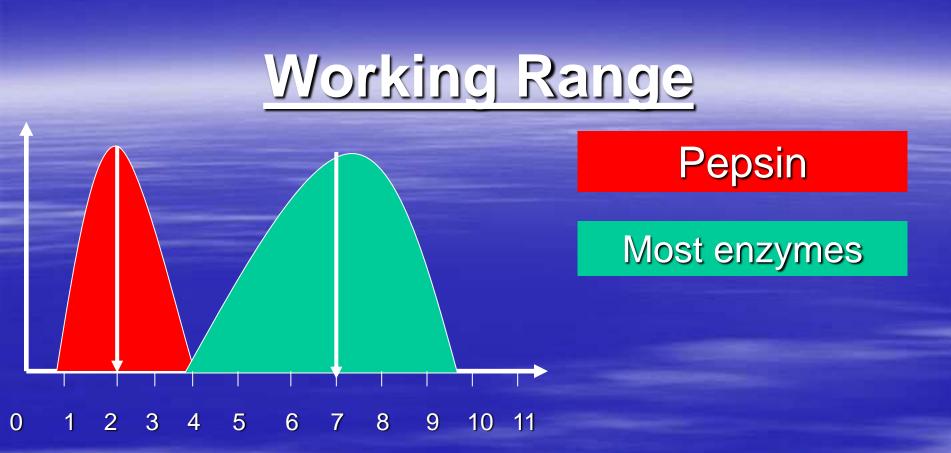

2. The Effect of pH

PH of the enzyme's surrounding is very important

Appendix of the property of the prope

The Effect of pH on Enzyme activity

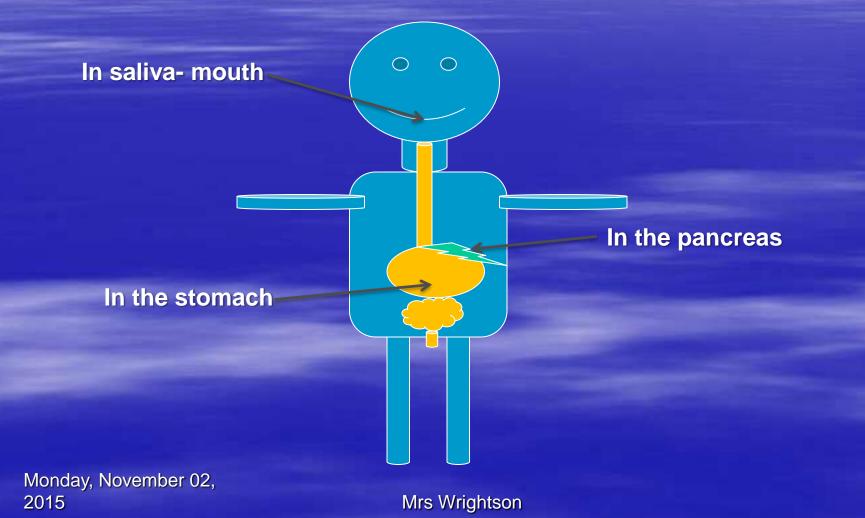
Aim: To investigate the effect different pH solutions have on the activity of the enzyme

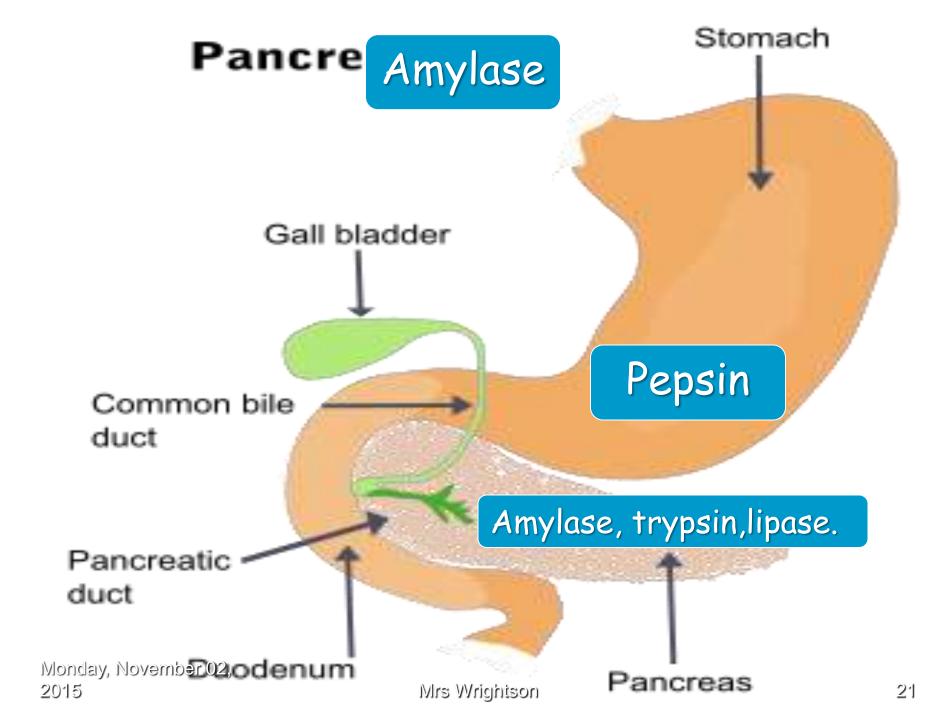


Set up the apparatus as shown above

pepsin

- Using a dropper add 2ml of pH2 pepsin to beaker A
- Using a dropper add 2ml of pH7 pepsin to beaker B
- Using a dropper add 2ml of pH14 pepsin to beaker C 4.


Leave overnight and observe any changes in appearance. 5. Monday, November 02, 2015


 Pepsin's working range is 1 - 4. Optimum = 2.5
Most enzymes working range is 4 – 10. Optimum pH = 7

Monday, November 02, 2015

Where are the <u>digestive enzymes</u> made in the body?

Where enzyme is found and pH	Name of enzyme	Substrate
Mouth pH 6.8	Salivary Amylase	Starch
Stomach pH 2-3	Pepsin	Protein
Small intestine pH 8	Pancreatic Amylase Pancreatic Lipase Pancreatic Trypsin	Starch Fats Proteins

